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Abstract

An analogy of the quantum mechanical Fano interference to the
classical system of harmonic oscillators is presented. I take the coher-
ent atom-laser interaction to illustrate the Fano interference in quan-
tum mechanics and then the analogy between the dressed state picture
of coherent-atom laser interaction to the classical coupled harmonic
oscillators is described. The Autler-Townes splitting in the coherent
atom-laser system is analogous to the normal-mode splitting in the
oscillators system though the reasons are completely different. I ex-
perimentally demonstrate this phenomena using the coupled electrical
resonator circuit.
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1 Introduction

In Physics, Interference is a well known phenomena where interaction of cor-
related or coherent waves gives rise to the intensity variation of the resultant
wave in the form of a symmetric line profiles. However, in certain cases asym-
metric line profiles are obtained as a result of the interference among waves,
which is known as Fano Interference, named after Italian physicist Ugo Fano.
This phenomena is generally regarded as a purely quantum mechanical phe-
nomena being caused by the interference of the waves coming from different
channels(unlike the Fabry-Perot interferometre in optics where resonance
occurs due to interference of two counter waves in the same scattering chan-
nel). From the quantum mechanical point of view, in the Fano resonance,
two paths,one direct from the discrete state and the other mediated by the
continuum - interfere to produce the asymmetric Fano profile given by :

f(ε) =
(ε+ q)2

1 + ε2
(1)

where, the dimensionless energy parameter ε = E−ER
Γ is used to mea-

sure the energy difference between the energy E and the energy of the peak
position ER, and Γ is the width of the resonance. q is the asymmetry pa-
rameter measuring quantitatively the degree of asymmetry of the resonance
profile. If the asymmetry parameter becomes either very large(|q| → ∞) or
very small(|q| → 0), then the Fano profile reduces to the symmetric Breit-
Wigner or Lorentzian profile.

This phenomena has been observed in many quantum mechanical sys-
tems, like semiconductor quantum wells, gold nanoparticles, nanomechanical
systems etc. Electromagnetically induced transparency (EIT) is also a man-
ifestation of the Fano interference.

The simple classical theory of the driven damped coupled oscillator tells
us that the line profile of the oscillator system is also asymmetric, very
much analogous to the quantum mechanical Fano asymmetric profiles! And
in fact, we can identify the multiple energy-transfer pathways(between the
source and the oscillator) which upon interference give rise to the asymmet-
ric profile.

We begin our description with the simple analysis of the classical driven
damped coupled oscillator system to understand the classical reason behind
this asymmetric profile. Then we will examine the Fano Interference in
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quantum mechanical system. After that, we will discuss the analogy between
the classical oscillator system and the quantum mechanical coherent atom -
laser interaction. At last, we will discuss the Fano interference in a coupled
resonator circuit through experimental demonstration.

2 Resonance in the Driven Damped Coupled Os-
cillator System

2.1 A Single Oscillator

The dynamics of a single harmonic oscillator under the presence of the damp-
ing & sinusoidal driving force is governed by the differential equation:

ẍ+ γẋ+ ω2
0x = A0 cosωt =

F0

m
cosωt (2)

where, ω0 is the natural frequency of the oscillator in the absence of the
damping & driving force, γ is the proportionality constant of the damping
force, and ω is the frequency of the external periodic force.

The steady state solution is given by:

x(t) = |A(ω)| cos[ωt− δ(ω)] (3)

where, |A(ω)| = A0/2√
(ω2

0−ω2)2+ω2γ2
,δ(ω) = tan−1( ωγ

ω2
0−ω2 )

So, when the external driving frequency becomes almost equal to the
natural frequency(ω ≈ ω0), then resonance occurs.Also, from the figure it is
clear that the phase of the oscillator changes by π when the oscillator goes
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through the resonance(remember δ is the angle by which the driving force
leads the displacement). As ω increases, the phase increases from 0 at ω = 0
to π/2 at ω = ω0 and to π as ω →∞. This is a clear indication of the delay
between the action of the driving force & the response of the oscillator with
the increase of the external frequency.

2.2 Two Coupled Oscillators

The dynamics of two coupled harmonic oscillators under the presence of
the damping & sinusoidal driving force(to one of them) is governed by the
differential equations:

ẍ1 + γ1ẋ1 + ω2
10x1 + v12x2 = A1 cosωt =

F0

m1
cosωt (4)

ẍ2 + γ2ẋ2 + ω2
20x2 + v12x1 = 0 (5)

where, v12 describes the coupling of the two oscillators.

In the absence of the coupling (v12 = 0), the two oscillators oscillate in-
dependently with their natural frequencies (ω10 & ω20). But, in the presence
of the coupling the system has two normal modes : two oscillators swing
back and forth together (in-phase mode) & they move in opposite directions
(out-phase mode).

In order to understand the behaviour of the system at the normal modes
let’s first consider the case when there is no damping i.e. γ1 = 0 = γ2.
Then the eigen-frequencies can be obtained from :

(ω2
10 − ω2)(ω2

20 − ω2)− v2
12 = 0 (6)

If the coupling parameter is weak (ω2
2 − ω2

1 >> v12), then the eigen-
frequencies are given by:

6



ω̃2
1 ≈ ω2

1 −
v2

12

ω2
2 − ω2

1

(7)

ω̃2
2 ≈ ω2

2 +
v2

12

ω2
2 − ω2

1

(8)

which are slightly shifted from the free mode frequencies of the individ-
ual oscillators.

Now, we consider the general case where the damping is non-zero. The
steady state solutions are obtained by putting x1(t) = c1 cosωt & x2(t) =
c2 cosωt in (4) & (5). Upon solving those we get :

c1 =
(ω2

2 − ω2 + iγ2ω)

(ω2
1 − ω2 + iγ1ω)(ω2

2 − ω2 + iγ2ω)− v2
12

A1 (9)

c2 = − v12

(ω2
1 − ω2 + iγ1ω)(ω2

2 − ω2 + iγ2ω)− v2
12

A1 (10)

The phase of the amplitude of the oscillators are defined through c1(ω) =
|c1(ω)|e−iφ1(ω) & c2(ω) = |c2(ω)|e−iφ2(ω) . The phase difference between the
two oscillators is given by

φ2 − φ1 = π − θ (11)

where,

θ = tan−1(
γ2ω

ω2
2 − ω2

) (12)

Now, we consider the case when the damping parameter of the
second oscillator is zero i.e. γ2 = 0 , but γ1 6= 0. Just like the single
oscillator system, the amplitudes of the oscillators are finite because of the
presence of the effective damping. The below figures show the amplitude
and phase of the first oscillator for γ1 = 0.025 & v12 = 0.1 :

Clearly the 1st oscillator has one symmetric resonance peak at ω ≈ 1
and another asymmetric peak at ω ≈ 1.21 . The asymmetric peak near
ω ≈ 1.21 occurs due to existence of the zero-frequency at ω0 = ω2 ≈ 1.2,
where the amplitude of the first oscillator becomes zero. This can be seen
from (9). This causes the distortion of the amplitude of the first oscillator
leading to the asymmetric peak.
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Now we will try to understand the physical reason behind this asym-
metry. Due to presence of the coupling between the two, the phases of
the oscillators change as the driving frequency passes through the resonant
frequency. When the driving frequency passes through the first resonant
point, the amplitude of this oscillator grows quickly to maximum and the
phase gets shifted by an angle π/2 (lags behind the driving force). Now
before reaching the second resonance frequency namely the zero-frequency,
the first oscillator settles down to steady state and eventually the phase of
this oscillator becomes π i.e. out of phase with respect to the driving force.
Next, as the external frequency passes through the anti-resonant at ω = ω0,
the phase of the first oscillator drops by π abruptly and again it jumps up
around the resonance peak to phase π, thus gaining essentially no net phase
shift after passing through the zero-frequency point.

Similarly, if we examine the amplitude and the phase of the second os-
cillator we get the following curves:

Two symmetric resonance peaks appear and the phase gets shifted rather
smoothly by π each time as the oscillator passes through the resonant point.
So, as the driving frequency crosses the second resonant point, the phase of
the second oscillator lags 2π behind the external force.
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3 Fano Resonance in Electromagnetically Induced
Transparency(EIT)

It has been known that if there is a possibility of making transition of
some atom from one state to another via several alternative transition pro-
cesses, interference between the probability amplitudes of these processes
may lead to an enhancement(constructive interference) or a complete can-
cellation(destructive interference) of the total transition probability. The
probability amplitudes, which are needed to be summed over to get the to-
tal transition probability, being either positive or negative can lead to such
kind of phenomena. An example of this phenomenon in atomic systems
is Fano interference, seen for radiative transitions to autoionizing states in
atoms leading to an asymmetric line profiles.

Here, the ground state |1〉 is coupled to the continuum state |E2, k〉 via
two alternative pathways: channel (a) is the direct photoionization path by
absorption of an ultraviolet photon, whereas the channel (b) is the indirect
photoionization path where the ultraviolet photon is absorbed to excite the
atom into the bound state |2〉 (having the same energy as |E2, k〉) followed
by a transition to the continuum state via inter-electronic Coulomb inter-
action. The probability amplitudes of these two process must be summed
over to get the overall transition probability amplitude. The interference
would be either constructive or destructive depending on the frequency of
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the UV photon. If the frequency is such, that there is no absorption of the
UV photons then this phenomenon is called EIT since the transparency is
induced by the external electromagnetic field. This interference is also an
example of Fano Interference.

4 Analogy between a Coupled Oscillator and Co-
herent Atom-Laser Interactions

There is an analogy between the classical oscillator system, which we have
investigated in section (2) and a system of coherent atom-laser interaction.In
order to see the connection between the asymmetric line-shape near the
resonant frequency in the coupled oscillators and the main feature of the
Fano interference associated in a quantum system, we study the Coherent
Atom-Laser interaction.

We consider a three-level atomic system:

A strong coupling laser couples the transition |2〉 → |3〉. EIT as a result
of Fano Interference takes place in the transition |1〉 → |3〉 because of the
interference between the two alternative pathways : (1) probability ampli-
tude of the transition from |1〉 → |3〉 , and (2) probability amplitude of the
transition from |1〉 → |3〉 → |2〉 → |3〉.
The probe and the coupling laser detuning(the difference between the laser
frequency and the atomic resonant frequency) are MP & MC respectively. In
the presence of the strong coupling laser, the bare states of the combined
laser and the atom are |3, n〉 & |2, n + 1〉, where n is the number of the
photons present in the laser field while the atom is in the excited state |3〉.
When the atom is de-excited to the state |2〉, then one photon is emitted
resulting the total number of photons as (n + 1). These bare states cross
each other at MC= 0 and becomes degenerate. But, due to the presence
of the coupling the dressed states : |+〉(symmetric) & |−〉(anti-symmetric),
which are linear superposition of the bare states, do not cross each other at
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Mc= 0 known as Autler-Townes splitting. EIT for the resonant probe laser
is observed for Mc= 0 because of the destructive interference of the channels
|1〉 → |+〉 and |1〉 → |−〉. Resonance for the two-photon Raman transition is
observed when the detuning of the coupling laser is larger than the natural
line width of the |1〉 → |3〉 transition. In this case, the resonance displays
an asymmetric line profiles.

Now, we will see exactly similar physics in the case of coupled harmonic
oscillator system. In the figure given below, the natural frequencies of the
oscillators are plotted as a function of detuning ω2 − ω1 :

Two lines cross each other when M ω = 0 i.e. for zero tuning. But, as we
have seen in the section (2.2), if we calculate the normal mode frequencies
then those will avoid crossing at zero-detuning which is exactly similar to the
dressed state picture for the coherent atom-laser interaction. The normal
mode splitting at zero-detuning is analogous to the Autler-Townes splitting
in the case of atom-laser interaction. Therefore, Fano resonance should be
observed in case of damped coupled oscillator system upon applying sinu-
soidal driving force. EIT is observed for zero-detuning and the two-photo
Raman transition is observed for non-zero detuning, |ω2 − ω1| > 0. Fano
interference can be explained as the destructive interference of the two en-
ergy transfer channels from the source to the coupled oscillator through the
normal-mode frequencies.

All important features of EIT can be observed when the normal-mode

splitting ω
(n)
1 − ω(n)

2 >> γ1, γ2, where γ1, γ2 are the damping constants of
the oscillators respectively.
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5 Fano Interference in a Coupled Electrical Res-
onator Circuit

As we know, the two systems: (1) driven damped coupled oscillator system,
& (2) the electrical resonator circuit are physically equivalent in their be-
haviour. Hence, to demonstrate the Fano interference at the classical level
we will use the coupled electrical resonator circuit.

The (L1, C1) & (L2, C2) represent the first & the second oscillator re-
spectively. The C acts as the coupling spring between the two oscillators.
The resistors R1 & R2 are analogous to the damping constant of the two
oscillators respectively since they are responsible for the energy loss. The
resonator circuit is driven by a sinusoidal voltage source.

5.1 Experimental Demonstration

We experimentally demonstrate the EIT and the two-photon Raman tran-
sition in a coupled LCR resonator circuit.

• Apparatus
C1 = 0.104µF,C2 = 0.107µF,C = 0.125µF
L1 = 0.942mH,L2 = 0.943mH
R2 = 0Ω, R1 = 5Ω
Functional generator & CRO.

• Experiment 1 : Voltage Gain vs Frequency
Firstly, we perform without the second part of the oscillator circuit
and we get the Voltage gain across the resistor R1 vs the Frequency of
the external source plot which comes out to be asymmetric in nature
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as we expect. Secondly, when we include the second part of the circuit
with the coupling capacitor, then we get the EIT like behaviour.

The second resonance peak has typical typical Fano line shape, which
is very much prominent since we make the resistance of the second
part of the circuit zero. If the loss is included by inserting non-zero
resistance R2, then the Fano line shape gets washed out though it
preserves the general feature of the resonance.
In the case of EIT, complete transparency is observed for R2 = 0, even
for very small coupling which leads to the normal-mode splitting being
much smaller than the width of the resonance peak. This observation
suggests that the observed transparency in this classical system is due
to the Fano interference of the two channels(through which energy
transfers to the system) and not due to the normal-mode doublet.

• Experiment 2 : Phase Difference vs Frequency
We measure the relative phase with respect to the source voltage
(phase of VR − phse of VS) with changing source frequency. The
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graph, which is obtained, shows us the EIT like behaviour.

The EIT like behaviour is clearly evident in the resonance and the
phase data. However, experimentally obtained Fano line shape is not
that much of prominent because of the presence of spurious resistance
in the circuit. Washing out of the Fano pattern with increasing R2

gives us the confirmation of this argument.

• Precautions & Discussions
Though the experiment is looking very simple but taking data correctly
is not a trivial one. One should be careful enough regarding some
issues, like as:

1. To measure the voltage gain, theoretically one could have fixed
the input peak to peak voltage of the functional generator and
just measure the output voltage with varying frequency. But,
one should not try to fix the input peak to peak voltage of the
functional generator because as one increases the frequency, the
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input voltage starts changing & near the resonance it changes so
rapidly that one can’t fix the input voltage to the desired value.
Always one should take the ratio of the output-to-input voltage
to get the voltage gain.
I think the primary reason for this phenomena is skin effect.
Skin effect is the tendency of an alternating electric current (AC)
to become distributed within a conductor such that the current
density is largest near the surface of the conductor, and decreases
with greater depths in the conductor. The electric current flows
mainly at the ”skin” of the conductor, between the outer surface
and a level called the skin depth. The skin effect causes the effec-
tive resistance of the conductor to increase at higher frequencies
where the skin depth is smaller, thus reducing the effective cross-
section of the conductor. This decreases the quality factor of the
circuit. The skin effect is due to opposing eddy currents induced
by the changing magnetic field resulting from the alternating cur-
rent.

2. One should not increase as well as decrease the frequency at a go
to take the readings, that may not give the correct data. Rather
one should take the data with increasing frequency till the last
and then start decreasing the frequency & again take the data
corresponding to the previous points. At last average should be
taken.

3. Before start doing the experiment one should figure out the theo-
retical resonant frequency to make himself/herself highly careful
near the resonance.

4. All the grounds of all the cables should be put to the same point
in the bread-board.

5. In the beginning one should verify the connections of the bread-
board.

6. Near the resonance, one should try to take the average reading
judiciously because signal may be significantly distorted near the
resonance.

6 Conclusion

We have discussed an analogy between the coupled classical oscillators and
the dressed state picture of coherent atom-laser interactions.In the mechan-
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ical systems of the classical oscillator the Fano like behaviour can occur.
Particularly, we have discussed how the asymmetry in the resonance curve
arises. This analogy between the quantum system and the classical system
helps us to understand the connection between the classical systems & the
quantum phenomena like EIT.
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